The NFPA requirement for cutters involves a performance test to prove the thickness of steel each cutter will cut, therefore allowing a Fire Department the ability to determine the strongest cutter by simply reading a chart. Published maximum cutting forces by rescue tool manufacturers, are erroneous. 90, 100, 200,000lbs of cutting force? Maybe on an engineers slide rule, but not in the real world. You see, NFPA got sick and tired of rescue tool manufacturers publishing crazy cutting forces. Forces that were calculated when the blades had moved past each other, which meant that the force could never be used, but technically was produced. The cutting test was devised to give a standardized way of evaluating cutters. The results allow the department to evaluate the performance of a cutter based on real cutting tests. This test requires that the cutter cuts 12 pieces of the largest material in each of the five categories. The tool is only allowed one set of cutting blades and each cut is made in a single continuous motion completely severing the piece of material. In order to pass this test a cutter must cut a minimum of 60 pieces of material of at least the minimum size in each category. This is an example of a cutting test result as you see below. If the cutter cuts . . .
“A”: a 3/4” round bar
“B”: a 1/4” x 4” flat bar
“C”: a 2” ID schedule 40 pipe
“D”: a 1” x .08” wall thickness square tubing
“E”: a 1 1/2” x 3/16” thick angle iron
the performance level of the cutter would be:
A4/B5/C6/D3/E4
Click here to view the NFPA performance ratings for our cutters. Though this test gives you a good idea of the power of the cutter, there are more things to consider: balance, ergonomics, weight, and speed of the tools. A cutter may be very powerful, but if it takes too long to build that cutting force its useless. Still, a Fire Department should be able to narrow their decision down to a couple of manufacturers by just requiring them to produce their NFPA cut sheet. Click here, to see an example of a Genesis NFPA cut sheet